Raman spectroscopy of ripple formation in suspended graphene.

نویسندگان

  • Chun-Chung Chen
  • Wenzhong Bao
  • Jesse Theiss
  • Chris Dames
  • Chun Ning Lau
  • Stephen B Cronin
چکیده

Using Raman spectroscopy, we measure the optical phonon energies of suspended graphene before, during, and after thermal cycling between 300 and 700 K. After cycling, we observe large upshifts ( approximately 25 cm(-1)) of the G band frequency in the graphene on the substrate region due to compression induced by the thermal contraction of the underlying substrate, while the G band in the suspended region remains unchanged. From these large upshifts, we estimate the compression in the substrate region to be approximately 0.4%. The large mismatch in compression between the substrate and suspended regions causes a rippling of the suspended graphene, which compensates for the change in lattice constant due to the compression. The amplitude (A) and wavelength (lambda) of the ripples, as measured by atomic force microscopy, correspond to an effective change in length Deltal/l that is consistent with the compression values determined from the Raman data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman-based technique for measuring thermal conductivity of graphene and related materials

We describe Raman spectroscopy-based method of measuring thermal conductivity of thin films and review significant results achieved with this technique pertinent to graphene and other two-dimensional materials. The optothermal Raman method was instrumental for the discovery of unique heat conduction properties of graphene. In this method, Raman spectroscopy is used to determine the local temper...

متن کامل

In-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites

Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...

متن کامل

Raman nanometrology of graphene: Temperature and substrate effects

Graphene has been a subject of intense interest because of its unique physical properties. Raman spectroscopy became a valuable tool for determining the number of graphene layers and assessing their quality. Here we review our recent results on the effects of substrates and temperatures on Raman signatures of graphene. Specifically, we considered graphene on GaAs, glass, sapphire, standard Si/S...

متن کامل

Controlled ripple texturing of suspended graphene and ultrathin graphite membranes.

Graphene is nature's thinnest elastic material and displays exceptional mechanical and electronic properties. Ripples are an intrinsic feature of graphene sheets and are expected to strongly influence electronic properties by inducing effective magnetic fields and changing local potentials. The ability to control ripple structure in graphene could allow device design based on local strain and s...

متن کامل

Raman spectroscopy study of nano sheets of graphene and measurement of their resistivity

Graphene is a promising candidate for future high-speed electronics applications. It is a thin layer of pure carbon in which every atom is available for chemical reaction from two sides (due to the 2D structure). This is the only form of carbon (or solid material) with this characteristic feature. Graphene oxide (GO) was synthesized through the oxidation of graphite using the Hummer’s method, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2009